|
|
I was honored to teach an elective class called "Engineering for Social Good" last semester. Our final project in the course was the design of computer controllers for individuals with quadriplegia. Our goal was to create prototypes, and then share the construction process on the site Instructables for individuals to recreate. The entire engineering design process can be seen on our class Padlet shelf here. A final student Instructable can be seen here. See a few images below. See a video of a controller in action below.
My "Engineering for Social Good" class just completed a three-week design cycle leveraging the MakeyMakey in the 100% distance learning setting. I have written about similar projects before, and I am, yet again, amazed by the power of the the "shelf" feature in Padlet for student public showcase, collaboration, and tracking of the design cycle. See embed the entire cycle below.
*Note: The below lesson is only an outline meant to encourage deeper thinking about the 5E cycle.
Standard
NGSS: HS-LS2-3: Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions. 1. Engage
Display the below image and ask the question: What are you curious about?
Desired student questions include, but are not limited to, the below:
*Purpose: To surface content related questions without explicitly asking students. 2. Explore
Teach how to leverage Arduino Uno to create their own Pulse Oximeter. Click here for instructions and materials. Once complete challenge students to design and conduct an experiment to determine the impact that various types of exercises and activities (breathing through a straw, etc.) have on pulse and oxygen saturation. Students will then hypothesize the relationship between pulse, oxygen saturation and energy use. Experiment must be conducted using appropriate research design methodology. (Control, independent, dependent variables outlined clearly)
*Purpose: To challenge students to think deeper about energy during exercise and strain, as well as revisit research methodology and promote crosscutting NGSS integration such as engineering, etc. into the lesson. By not addressing "Blood Doping" directly, students are left wondering the relationship between the "Engage" and "Explore" phase further intensifying their curiosity and desire for more content. 3. Explain
Conduct a lesson on Cellular Respiration, clearly outlining and diagraming the process of Glycolysis, Krebs cycle, and defining organelles such as the cytosol and the mitochondria. Once complete, ask the driving question: How does the processes outlined relate to "Blood Doping". After students share their responses, play the video below:
*Purpose: To deliver basic content (diagrams, processes, vocabulary) to help students make a deeper connection between the "Engage" and "Explore" phases.
4. Extend
Pose the below medical case study to students and challenge them to:
A, 23-year-old, 5’ 9”, 105 lb, caucasian female presented in her physician’s office with a sudden onset of weight loss along, pain when urinating, and chronic extreme hunger. The patient also reported a strange mold-like substance forming in her toilet over the past week. *Purpose: To facilitate connection between information obtained during the "Explain" phase and applications of content in the "real world" (note: I hate the term "real world" but application can extend beyond medical diagnostics, etc.). 5. Evaluate
This is the third year that I am teaching a course titled "Introduction to Robotics" as part of our regular curriculum at Sonoma Academy. Click here to access our class website.
The goal of the first few weeks is to answer the question "What is Robotics?" Merriam-Webster defines a "Robot" as... ...a machine that resembles a living creature in being capable of moving independently (as by walking or rolling on wheels) and performing complex actions (such as grasping and moving objects). I have always struggled to help students derive there own definition of what a "Robot" is using standard curricular materials. The "...moving independently" portion of the definition is not a problem initially, as most systems (Lego Mindstorm, VEX EDR, etc.) feature the ability to autonomously program the robot to perform complex tasks. Not a problem. However, when relating a definition of the structure of robotic competitions such as those seen in FRC, and VEX I have always struggled. Each of these competitions features a "telops" phase, where a driver is remote controlling the robot to perform a series of tasks in addition to an "auton" phase, where the robot performs the tasks individually. Logically explaining to students that remote controlling a system is a branch of robotics is difficult. If a human is in control, is the machine still performing a series of complex tasks? How do we rationalize the inclusion of a human controller into the field of Robotics? This year, I decided to tackle the conceptually challenging topic of rationalizing the role of the "telops" in robotics. Here is what I did for the first two weeks:
Student responses were fascinating. All students understood that in the Arduino Uno controlled autonomous robot, the program written living on the microprocessor provided commands directly to the motor controllers, guiding the robots movements. The remote controlled robot "program" surfaced different, incredibly intriguing responses such as: God programmed us to send a signal to the receiver to control the robot. Evolution programed us to send a signal to the receiver to control the robot. Education programmed us to send a signal to the receiver to control the robot. Amazing questions also emerged: Is it possible to program the Arduino to fight more efficiently than the remote controlled robot? What happens when the intelligence of the Arduino Uno matches that provide by God, Evolution, etc.? Is this related to the Technological Singularity? AI? Although this unit laster longer than I would have liked, the physical motion of removing the transmitter-receiver system, and replacing it with a preprogrammed microprocessor opened up incredible discussion about what it means to be "...moving independently". I freaking love teaching. If you are like me as a science teacher, you simultaneously live the acronym "STEM" and are exhausted by its overuse in nearly every blog, set of state standards, or professional development seminar that comes to town (Full disclosure: I often facilitate those seminars).
That being said, the more I dive into the world of Robotics (second year as an FRC Mentor and long time Summer Science Camp facilitator), the more potential I see in leveraging that which we often write off as "trendy, and that which we hold dear. Tools common to enrichment programs (MakeyMakey, Arduino, MicroBit etc.) can potentially be powerful tools in my/our Biology and Chemistry classes during the school year, while also engaging students in a disciplines they would not normally see embedded in traditional physical and life science courses. Below are links 5 activities I have done, or plan to do, that merge coding/electronics and biology/chemistry. Enjoy! #1: MakeyMakey Interactive Eukaryotic Cell #2: Lego Mindstorm Natural Selection Simulation #3: Modeling States of Matter with the MicroBit #4: Drop Counter Hack with MakeyMakey #5: Arduino Conductivity Probe |
Categories
All
Archives
May 2023
|