|
|
In my biochemistry class, I recently introduced a very simple yet effective game: “Memory.” This classic game, where players match pairs of cards, turned out to be a fantastic way for students to learn functional groups. I don’t know why I hadn’t thought of this earlier! The concept is straightforward and easily adaptable to any subject matter that requires memorization of pairs—whether it’s names and their corresponding symbols, shapes, equations, or even algorithms. In this case, I used it to help students memorize the names of functional groups, such as “alcohol,” and match them with their corresponding structures. I simply bought a bunch of index cards from the dollar store, wrote the names on half of them and the structures on the other half, and the students were off to the races after a quick explanation.
What surprised me the most was how effective this simple game turned out to be. Functional groups are foundational in biochemistry—they pop up repeatedly as we move from studying small molecules to exploring larger biological macromolecules. They are crucial for understanding secondary structure forces in amino acids, the folding patterns in proteins driven by hydrophobic and hydrophilic interactions, and much more. By playing “Memory,” students weren’t just memorizing the names and structures; they were also engaging in active learning, which helped reinforce their understanding in a fun and interactive way. Initially, I worried that the game might be too basic or that students wouldn’t take it seriously, but it turned out to be a hit! Not only was it an easy lesson plan to implement, but it also became a valuable tool for revising and reinforcing knowledge as we progressed through more complex topics. The game offered a dynamic way to break the monotony of traditional lectures and keep students engaged. It proved to be a versatile strategy that I could see applying to many other topics in biochemistry and beyond. Click here for more classroom related examples of Memory. This lab activity directly tackles a pressing issue: the opioid crisis, with a spotlight on fentanyl, one of the most potent and problematic drugs out there. This isn't just any experiment; it's a timely exploration of a topic that's as relevant as it is serious, using a creative setup to model the brain's defense mechanisms against substances like fentanyl. Using simple materials to simulate the blood-brain barrier, we'll uncover why fentanyl is particularly adept at breaching this protective boundary. It's a hands-on way to grasp the complex science behind drug interactions and their impact on the brain. I'm aiming to strike a balance here—keeping it professional, yet approachable, ensuring we all grasp the gravity of the opioid epidemic while engaging with the chemistry that underlies it. This lab is more than an educational exercise; it's a chance to connect classroom learning with real-world challenges and tackle this topic head-on, learn together, and shed light on the science behind opioid toxicity. Click here for access to all lesson resources
|
Categories
All
Archives
March 2024
|