|
|
Today in neuroscience class, I introduced the students to an EV3 robotic input-output system, aiming to draw parallels between robotics and the human nervous system.
I set up the robot with three sensors—touch, ultrasonic, and light—and programmed it with four input-output triggers. If students pushed the button, the motor would move. If they placed an object within three inches of the ultrasonic sensor, the robot would "growl." The light sensor triggered a heart display when a white surface was placed over it, and "angry eyes" when a black surface was detected. While the button and ultrasonic sensor triggers were relatively easy for students to find, the light sensor triggers posed more of a challenge, encouraging deeper exploration. Afterward, I prompted a discussion about how this robot system is similar to the human nervous system. We compared each robot part to neuron types—sensory, interneurons, and motor neurons—and talked about the implications of mimicking life through neural networks versus the simplicity of robotic code. This exploration set the stage for future lessons on sensory-stimulus pathways, reflexes, and reactions, helping students understand the complexity of human input-output systems compared to robotic ones. Check out some photos of the robot in action below!
In our Design for Social Good class, students were given a final project challenge: to apply their CAD, electronics, and Robotics skills to simulate robotics' applications in military and law enforcement. Our specific task was to create a user-friendly CAD-designed controller housing an Arduino Leonardo. This controller could remotely operate a robot, simulating the disarmament of a hypothetical explosive. Students controlled their robots from a different location by using their phones as cameras, which were mounted on the robots. They streamed video to their control station through platforms like Zoom or FaceTime. To understand the project instructions and grading criteria, click here. For documentation, students recorded their streamed video and added voice-over narration to explain the process. Below is an example:
Over the past two weeks I had the opportunity to develop and teach an elective class to expose students with no prior knowledge in Robotics to basic engineering and program via the Intersession program at my school. The program went well and the students seemed to benefit from a simplified/clear structure that leveraged autonomous robotics (via Lego EV3) and RC Robotics (via VEX V5) as the overarching pedagogical structure. Click here to access the curriculum for those of you who are also interested in introducing students to basic robotics at your school site or in your programs.
As my first complete semester of 100% distance leaning comes to a close (last spring was triage at best), I wanted to share all of my resources for fellow STEM teachers. I am by no means proud or this work as my curriculum was cut significantly short as I negotiated the myriad of distance learning roadblocks I'm sure we all faced. Regardless, there are nuggets that I am proud of, and some you might (specifically, chem, bio, and robotics teachers) find useful if you dig around enough. I simply feel an obligation to share. Reach out here with ANY questions.
Chemistry Resources Biology ResourcesRobotics. Resources I was honored to give a presentation yesterday to colleagues in Utah on strategies to promote engagement in the sciences when teaching in a 100% distance learning setting.
Rather than share an exhaustive list og best practices (which are constantly evolving), I decided to give participants a snap shot of my current thinking on distance learning science pedagogy which is heavily informed by constant reflective practice. Click here for a link to a PDF of the presentation which features my top four current strategies. I am sure these will change...but sharing reflection and iteration, I feel, is very powerful. At least for me. And it's my blog. :) |
Categories
All
Archives
October 2024
|